
Castor oil polyol for polyurethane resin material

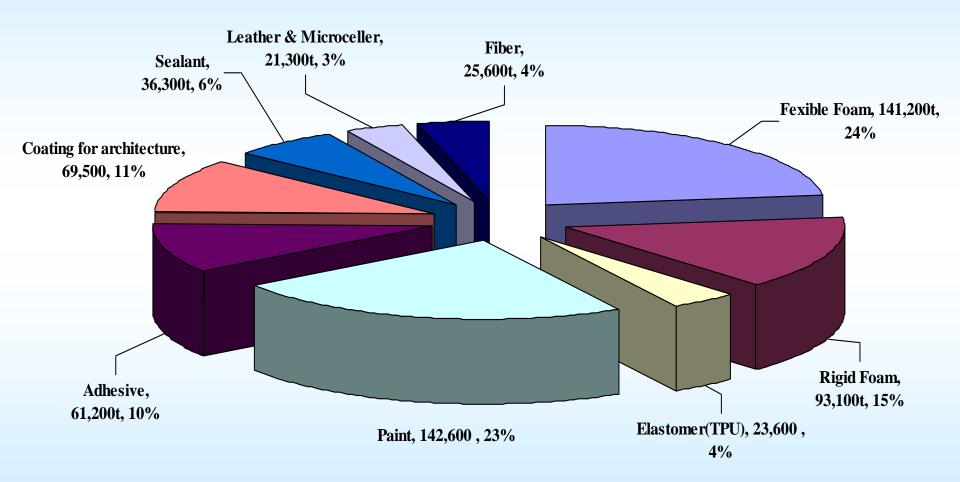
URIC

ITOH OIL CHEMICALS CO., LTD.

Polyurethane raw materials

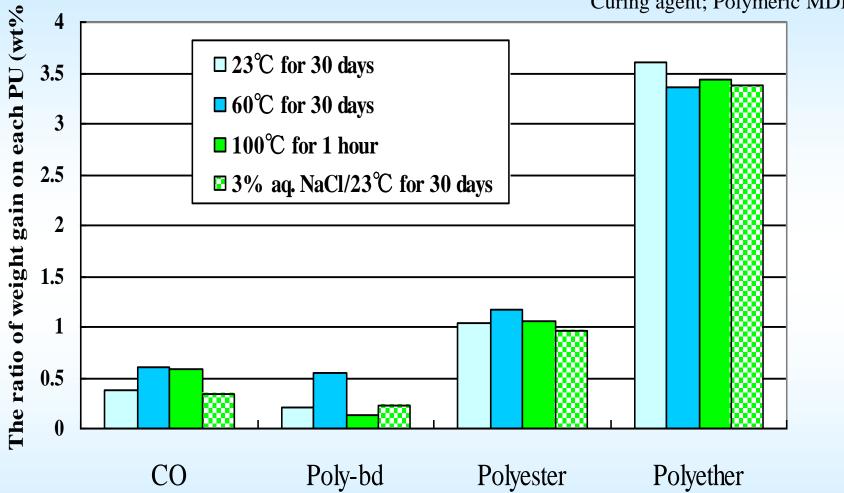
Other — Catalyst, Extender, Flame retardant etc.

Feature of polyurethane


Polyurethane resin has various hardness by selecting polyol, so that its application is farreaching.

Since polyurethane resin is easy to foam, it finds active uses as flexible foams for furniture, automobiles or trains, and rigid foams for heat insulator etc.

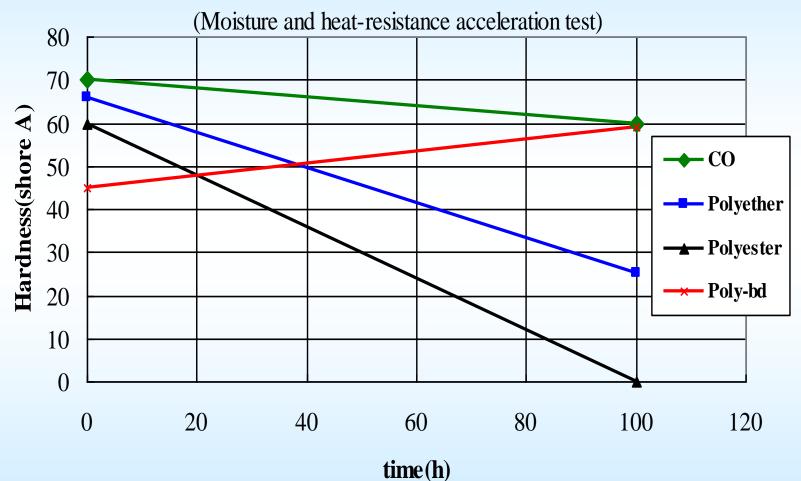
Polyurethane resins are excellent physical strength, abrasive resistance, elasticity etc.


Japan's PU market in FY07

(Total: 614,400 tons)

Water Resistance

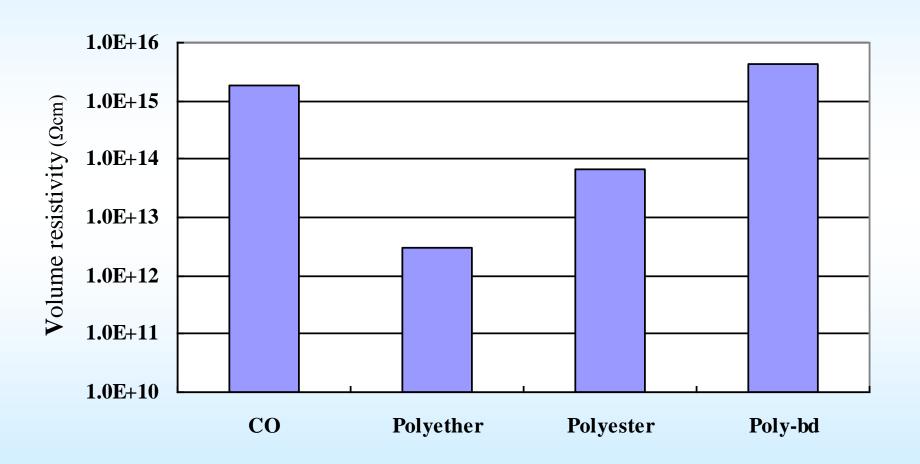
Curing agent; Polymeric MDI

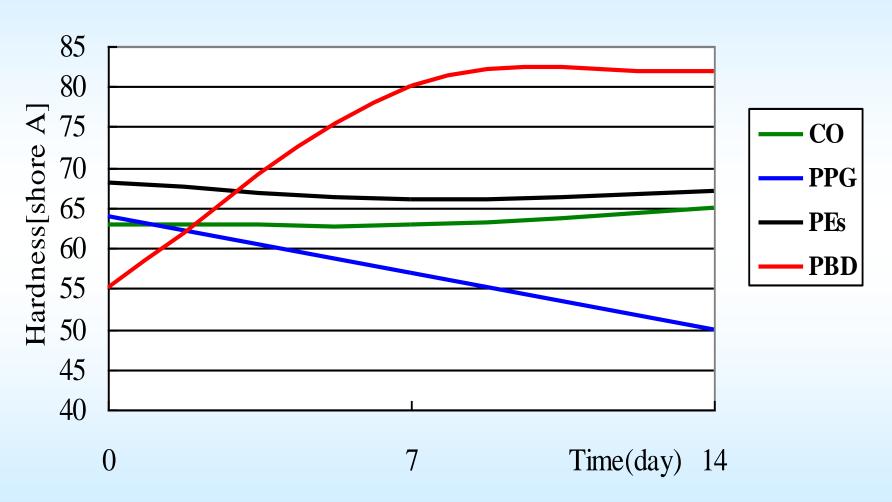

Curing agent; Polymeric MDI(NCO INDEX=1.05)

Poly-bd; Polybutadiene polyol (MW=1200, F=2.2),

Polyester; AA type(MW=1000, F=3), Polyether; PPG(MW=1000, F=3)

Hydrolysis resistance


Variation of hardness in PCT; pressure cooker test


Curing agent; Polymeric MDI(NCO INDEX=1.05)

PCT condition; 121°C, 100wt%, 0.2MPa

Electrical characteristics

Heat Resistance

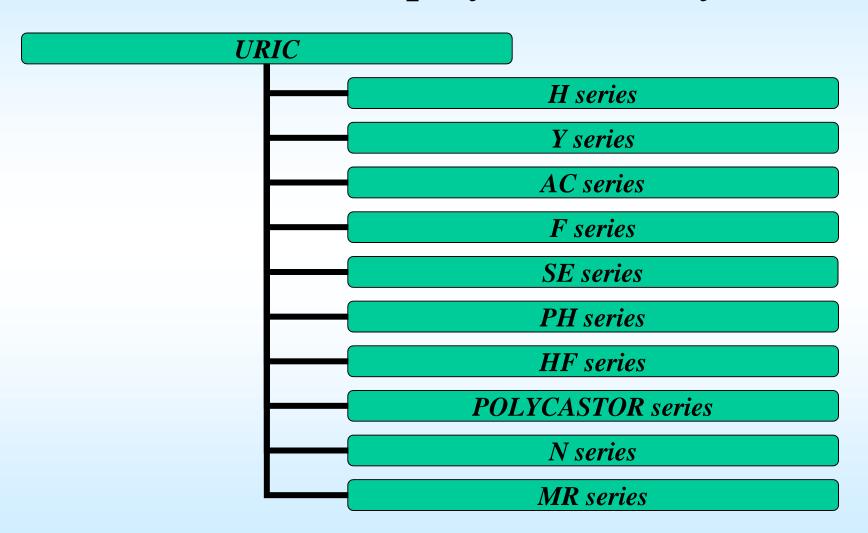
Curing agent; Polymeric MDI(NCO INDEX=1.05) Condition; 150°C in air

Performance Comparison

	Castor Oil	PPG	PE's	Poly-bd
Water	G	P	F	G
Boiling water	G	P	P	G
10% aq. NaOH	G	P	F	G
10% aq. H ₂ SO ₄	G	P	F	G
Methanol	G	P	F	G
Acetone	P	P	P	P
Ethyl Acetate	P	P	P	P
Paraffin oil	G	G	G	P

G: Good

F: Fair


P: Poor

Curing agent; Polymeric MDI(NCO INDEX=1.05) Solvent dipping condition; 23°C for 10 days **URIC Series** consists of polyol derived primarily from castor oil. The URIC Series is widely used in anti-corrosion paints, adhesives, floor coating materials and a variety of elastomers.

Features:

- Low viscosity & low foaming
- Excellent pigment wetting, water resistance and electrical insulation.
- Mechanical strength utilizing castor oil characteristics

URIC castor oil polyurethane systems

URIC castor oil polyurethane systems

H series General purpose grade. High quality castor oil based polyols

Y series Excellent compatibility and lower viscosity with hydrocarbon polyols

AC series Castor oil mod. polyols which have aromatic structure

F series Castor oil polyols for floor coating materials

URIC castor oil polyurethane systems

SE series Environmental friendly polyester polyol based on sebacic acid

PH series Special modified castor oil polyols for urethane gel

HF series CO polyols for flexible & rigid foam etc.

POLYCASTOR series

Polymerized castor oil for elastomers and coatings. It is also used as surfactants or plasticizers.

Solvent-free 2KPU systems using URIC

USE	FEATURE
Floor coating materials	Low foaming at applying
Electric sealants	Excellent insulation, Water proof, Good combination with others
Anti-corrosive paints &	Flexibility, Impact resistance and
Adhesives	Excellent adhesive properties to metal, plastics etc.
Foams	Environmental friendly, low elastic,
(flexible & rigid)	high heat insulating properties
	14

URIC H Series

URIC H Series is the general purpose grade. The H Series is a high quality castor oil based polyol, which can be used for a wide range of polyurethane applications. There are a variety of grades with different viscosities and reactions making it suitable for many applications. Using the H Series with Polyurethane elastomers will provide better heat stability, hydrolysis resistance, acid resistance and chemical resistance than general polyester based polyurethanes. It also gives outstanding flexibility, insulation and mechanical properties such as adhesion or impact resistance.

Typical Properties of H Series

	OHV [mgKOH/G]	AV [mgKOH/G]	Water content [wt%]	Viscosity [mPs.s, 25°C]	Functionality
H-30	160	0.2	0.03	690	2.7
H-31	164	1.0	0.03	30	1
H-52	200	0.5	0.03	630	3
H-56	90	2.0	0.03	230	2
H-57	100	2.0	0.03	460	3
H-62	260	2.5	0.03	265	2
H-73X	270	2.0	0.03	1000	3
H-81	340	2.0	0.03	1200	3
H-420	320	1.0	0.10	800	3
H-854	215	1.0	0.05	800	3

Typical Properties of H Series

Crosslinked with polymeric MDI, NCO content 31%, NCO Index:1.05 at 25 °C

	Hardness Shore A/D	Pot life *1 [min]	Elongation [%]	Tensile strength [MPa]	Tear st. [N/mm]	VR [Ω·cm]
H-30	74/23	62	132	8	25	2.0E+14
H-31	-/-	-	-	-	-	-
H-52	91/38	58	100	10	27	4.0E+14
H-56	30/5	-	120	0.5	2	2.0E+11
H-57	44/9	200	480	0.9	3	2.0E+12
H-62	- /55	30	81	6	51	2.2E+14
H-73X	- /70	24	39	28	55	9.5E+14
H-81	- /68	17	35	23	87	1.1E+15
H-420	- /80	41	10	48	25	3.0E+15
H-854	- /60	57	172	13	28	5.0E+15

^{*1;} Time its viscosity reaches 50,000 mPa·s at 25°C after mixing polyol and polymeric MDI

Typical Properties of H Series

	Properties and Applications
H-30	Refined castor oil for 2KPU elastomers & coatings.
H-31	Reactive diluent for PU polyols, epoxy and acrylic resin etc.
H-52	Castor oil polyol for 2KPU system.
H-56	Castor oil polyol for 1KPU system except electric sealants.
H-57	Castor oil polyol for 2KPU system except electric sealants.
H-62	Castor oil polyol for 2KPU elastomers and coatings.
H-73X	Great anti-hydrolysis and physical properties for 2KPU elastomers
H-81	and coatings.
H-420	Great physical property and heat resistance for 2KPU coatings, adhesives and sealants.
H-854	Great anti-hydrolysis and adhesive properties for 2KPU heavy duty coatings.

URIC Y Series

URIC Y Series is specialty polyol, derived from castor oil and other fatty acids, which has 2 or 2.2 functional groups. It is suitable as a reactive diluent for insoluble 2KPU systems. It has excellent compatibility and lower viscosity with hydrocarbon based polyols, such as poly-butadiene polyol, which is incompatible with most polyols. The Y Series improves mechanical properties, such as tensile strength and elongation. The Y Series also prevents bleeding or shrinkage from heat after molding, unlike typical non-reactive diluents.

Y-332 has excellent weather ability and non-yellowing property. It can also be used as reactive diluents for isoprene polyol. There is just one of the Y Series outstanding benefits due to its non-double bonding characteristics.

Typical Properties of Y Series

	OHV mgKOH/g	AV mgKOH/g	Mois.	Vis. mPa·s, 25℃	F*1	Properties & Applications
Y-202	120	1.0	0.03	650	2	Good water resistance and anti-foaming property. In addition, great reactive
Y-403	160	1.0	0.03	220	2	diluents for polybutadiene polyols for 2KPU sealants, adhesives etc.
Y-406	165	1.5	0.03	250	2.2	
Y-332	123	0.5	0.03	1250	2	Good weather ability for 2KPU systems. Great reactive diluents for isoprene polyols.

*1; Functionality

Urethane Properties of Y Series

	Hardness Shore A/D	Pot life *1 [min]	Elongation [%]	Tensile strength [MPa]	Tear st. [N/mm]	VR [Ω·cm]
Y-202	55/10	344	87	2.5	4.0	7.0E+13
Y-403	33/4	-	109	0.6	3.0	1.40E+14
Y-406	59/12	48	110	3.0	6.0	1.40E+14
Y-332	53/12	-	107	24	5.0	1.60E+14

Crosslinked with polymeric MDI, NCO content 31%, NCO Index:1.05 at 23°C In case of Y-332, it is crossliked with HDI isocyanurate; NCO content 21% at 25°C)

^{*1;} Time its viscosity reaches 50,000 mPa·s at 25°C after mixing polyol and polymeric MDI

Formulation Example

	Blank 1	e.g. 1	e. g. 2	e.g. 3
Poly-bd *1	100	50	50	50
Y-202		50		
Y-403			50	
Y-406				50
Viscosity [mPa·s, 25°C]	7000	3200	1600	1750
Hardness [shore A]	46	46	50	58
Elongation [%]	160	190	640	720
Tensile Strength [MPa]	1.4	1.9	3.7	5.2

^{*1;} Polybutadiene polyol (OHV 46.6, Functionality 2.2)

URIC AC Series

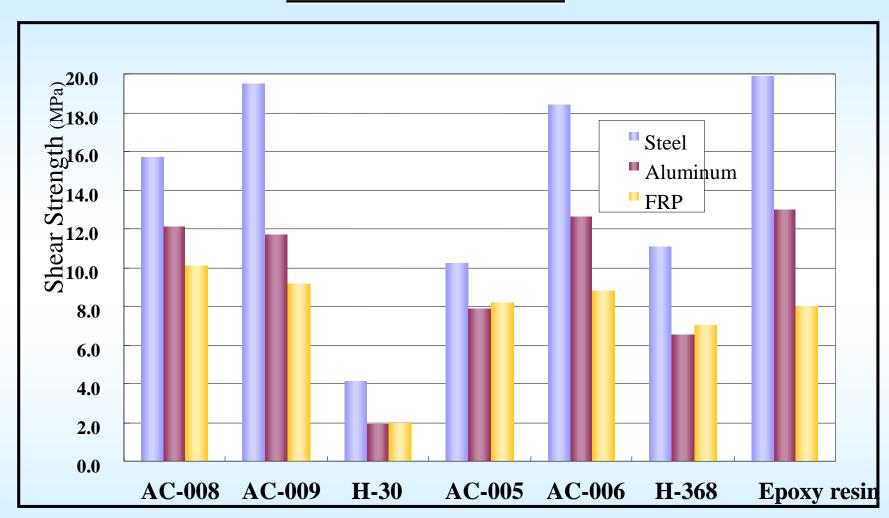
URIC AC Series is castor oil modified polyol which has aromatic structure. It can be used in insoluble polyurethane systems with the use of isocyanates such as polymeric MDI etc.

Combined with MDI, the AC Series performs with outstanding mechanical strength and excellent adhesion to metals. It also shows exceptional impact resistance and water resistance.

Typical Properties of AC Series

	OHV mgKOH/g	AV mgKOH/g	Mois.	Vis. mPa·s, 25℃	F*1	Properties & Applications
AC-005	210	1.5	0.03	1200	2	BPA modified castor oil polyols for 2KPU adhesives
AC-006	178	3.0	0.03	4000	2	and coatings. Great adhesive for metals and good anti-
H-368	195	1.0	0.03	1300	2.5	corrosive properties.
AC-008 (NEW)	180	1.5	0.03	1600	2.5	Improved the existing AC series, which are stricken a
AC-009 (NEW)	225	1.5	0.03	1500	2.5	balance between handling & adhesive property, not mention, chemical resistance.

^{*1;} Functionality


Urethane Properties of AC Series

	Hardness Shore D	Pot life *1 [min]	Elongation [%]	Tensile strength [MPa]	Tear strength.	Volume resistance
AC-005	73	52	25	39	136	1.2E+15
AC-006	78	74	17	51	34	3.0E+15
H-368	68	53	120	23	112	1.8E+15
AC-008	47	73	95	15	50	5.5E+16
AC-009	69	37	100	30	30	1.8E+16
H-30 (CO)	23	62	132	8	25	2.0E+14

Crosslinked with polymeric MDI, NCO content 31%, NCO Index:1.05 at 85°C for 16 hours

*1; Time its viscosity reaches 50,000 mPa·s at 25°C after mixing polyol and polymeric MDI

Adhesion Test

Substrate: Material: Surface Treatment:

Steel Panel spcc-sd Aluminum panel A1050P FRP Sand-blasted Sand-blasted Polyester

Impact Resistance

Du Pont test 1)

Falling weight	Contact (radius mm)	AC-005	AC-006	H-368	AC-008 (NEW)	AC-009 (NEW)	Epoxy Resin 2)
1000g	6.35	Good	Good	Good	Good	Good	Good
	3.18	Good	Good	Good	Good	Good	Bad
	1.59	Good	Good	Good	Good	Good	Bad

1)Falling height; 500 mm,

Test film is coated on 3mm in thickness on the sand blast surface carbon steel (SIS Sa 2 ½)

2)Epoxy resin; EPYCOAT 828 crosslinked with polyamine; VERSAMID 115

27

URIC F Series

URIC F Series was developed for floor coating materials with the use of crude MDI, which has excellent hardness and elongation.

One of the most challenging issue of polyurethane floor coating is heat and humidity at applying. However, the film coating with URIC F series is very stable under high heat and humidity.

Urethane Properties

(Crosslinked with polymeric MDI, NCO: 31%, INDEX: 1.05)

	F-15	F-25	F-40
OHV [mgKOH/g]	167	188	236
AV [mgKOH/g]	1.5	0.6	1.5
Viscosity [mPa·s, 25°C]	3,000	2,600	3,900
Hardness [Shore D]	67	70	80
Elongation [%]	122	96	85
Tensile Strength [MPa]	26	28	43
Tear Strength [N/mm]	58	86	170
Feature	General purpose grade	General & refinish use	High hardness, impact resistance

Comparison of PU floor coatings

Typical Formulation

Polyol: 63.0

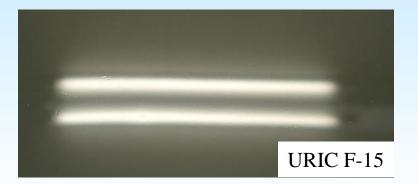
Extender pigment: 26.0

Dehydrating agent: 7.0

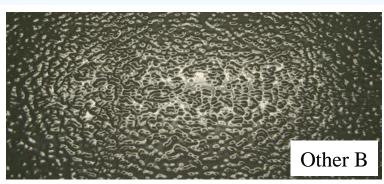
Coloring agent: 3.5

Defoamer: 0.5

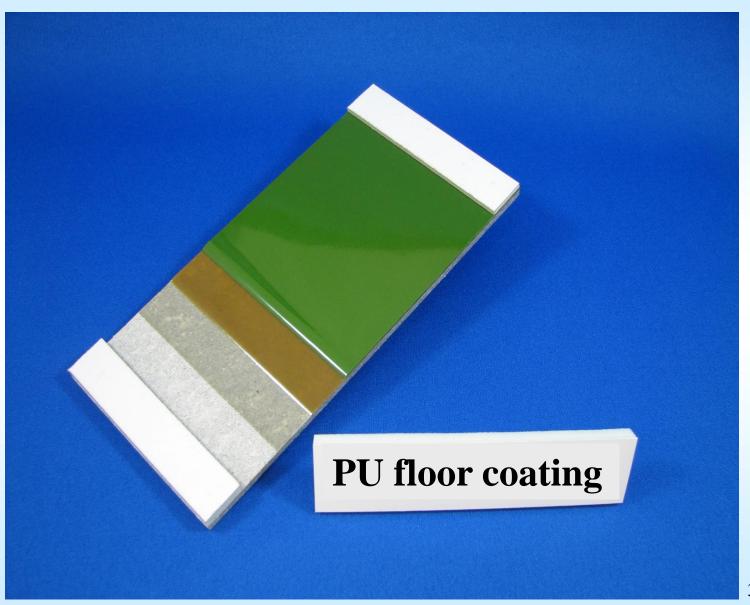
Crosslinker (P. MDI): 25.0


*Formation rate:3/1

Condition;


Coating condition; 35°C, 90%

Curing agent; Crude MDI (Polymeric MDI)


Film thickness; 500 micron with applicator

Example 1 URIC F-15, F-25, F-40

URIC SE Series

URIC SE Series is polyester polyol using sebacic acid. SE series shows better water resistance and good performance at low temperature compared with the adipate type polyester polyols. It can be used as a material for TPU, reaction hot melt or fiber. And it finds uses in adhesives for automobile and retort pouches for food.

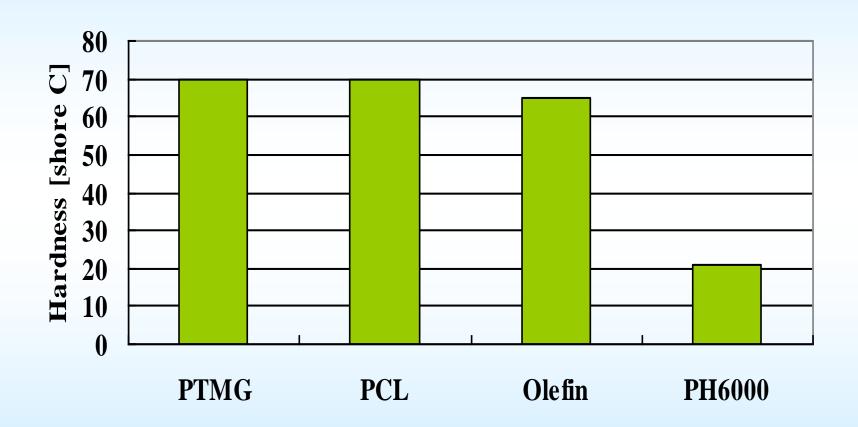
Especially, SE-2003 is an environment-friendly product which is made from sebacic acid and 1,3-propanediol. The former is derived from castor oil, and the latter is made from corn seed oil.

SE Series Environmental friendly polyester polyol; better water resistance and excellent performance in lower temperature crosslinked with pure MDI)

	SE-2003	SE-2606
Appearance	White solid	White solid
Acid Value [mgKOH/g]	0.3	0.1 or less
Hydroxyl Value [mgKOH/g]	56	43
Melting Point [°C]	54	66
Composition	SA/PDO	SA/HG
Molecular weight	2,000	2,600
Hardness [shore A, D]	94A	49D
Modulus at 100% [MPa]	4.4	-
Modulus at 300% [MPa]	6.6	-
Elongation [%]	>700	-

XSA; Sebacic acid, PDO; 1,3-Propanediol, HG; Hexylene glycol

PH Series Special modified castor oil polyols for urethane gel

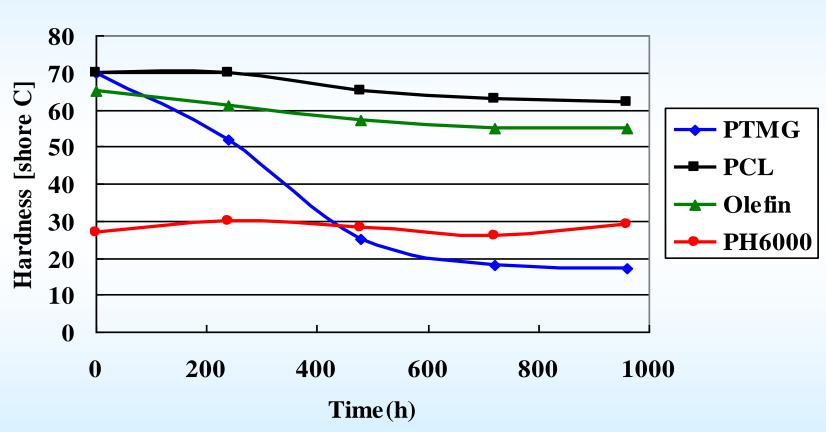

Urethane Properties

(crosslinked with liquid MDI; NCO content: 29%, NCO index: 1.05)

	PH-5001	PH-5002	PH-6000
OHV [mgKOH/g]	45	43	46
Viscosity [25°C, mPa·s]	5,400	8,300	5,800
Functionality	2	2	2
Hardness [shore C]	18	21	17
Elongation [%]	670	890	590
Feature	General purpose use	Excellent elongation	Excellent heat resistance

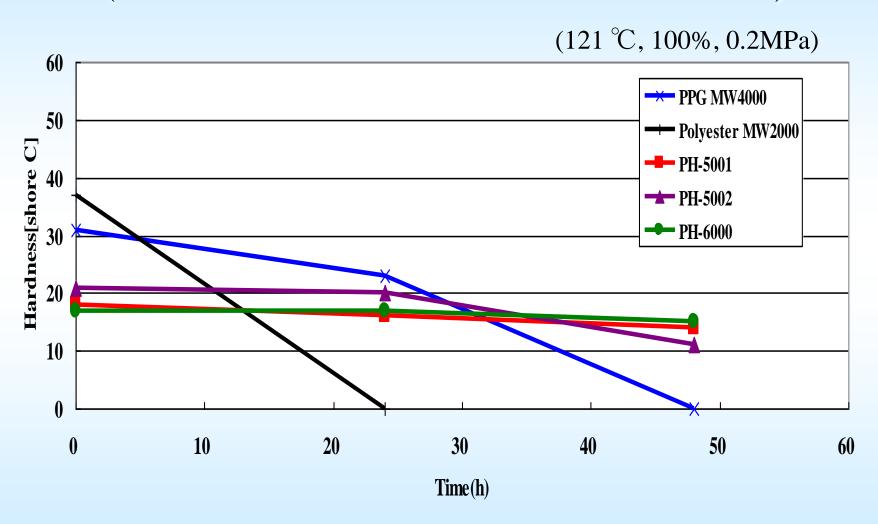
Comparison of hardness

Comparison of Hardness (at 25°C)

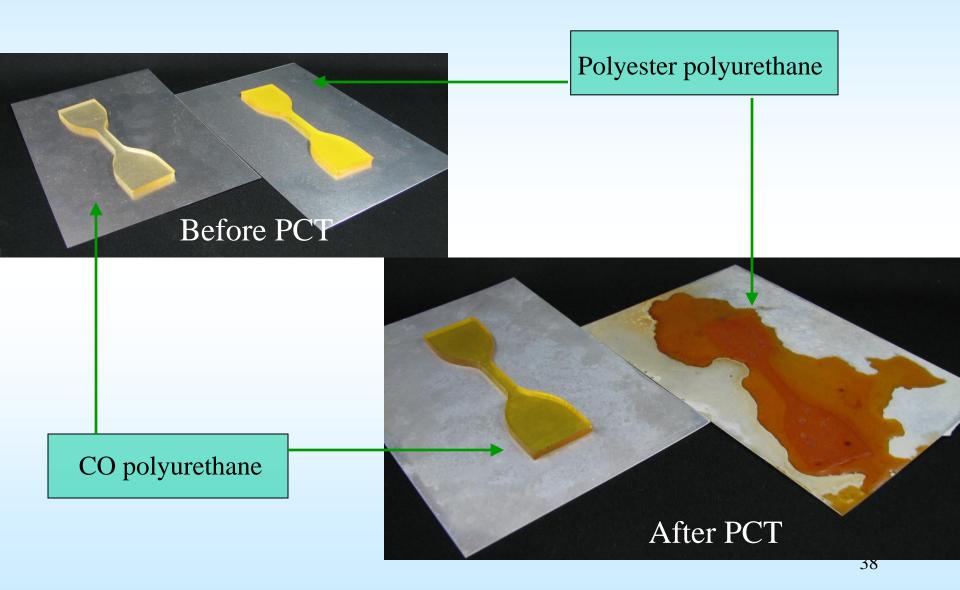


Curing agent; Liquid MDI(NCO INDEX=1.05)

PTMG, PCL; (MW=3000, F=2.0), Olefin; Isoprene polyol (MW= 2500, F=2.2) 35


Thermal resistance

Heat resistance test at 150 °C in air

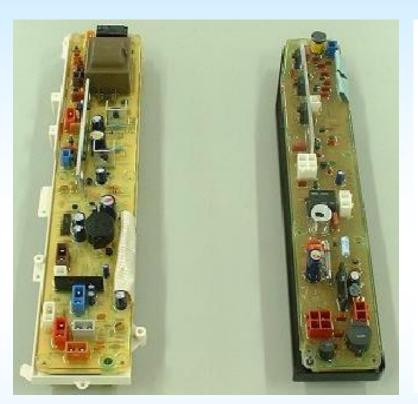


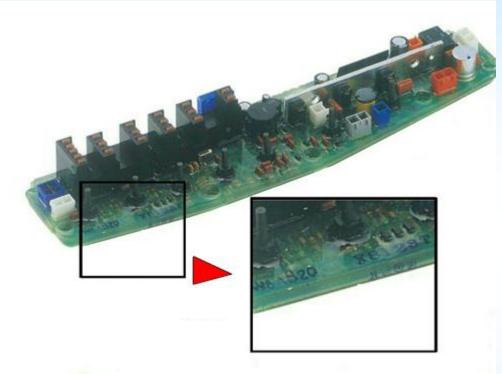
PCT (Presser cooker test)

(Moisture & Heat resistance acceleration test)

Comparison between CO-PU and PEs' one

POLYCASTOR Series


Polymerized CO for 2KPU system, which shows excellent heat resistance and insulation. It also finds uses in materials for surfactants, lubricants, plasticizers, etc.


	#10	#30		
Appearance	Yellow tint liquid	Yellow tint liquid		
Acid value [mgKOH/g]	2.0	2.0		
Hydroxyl value [mgKOH/g]	160	155		
Viscosity [25°C, mPa·s]	2600	4750		
Water content [%]	< 0.05	< 0.05		
Functionality	5-6	5-6		
Hardness [shore A, D]	88A, 39D	96A, 49D		
Pot life *1 [min]	31	26		
Elongation [%]	97	84		
Tensile strength [MPa]	10	12		
Tear strength [N/mm]	21	36		
Volume resistance [Ω·cm]	7.4E+14	1.3E+15 39		

Application field of URIC

H-30, Y-403, H-420, H-1824, AC-005 Insulation sealant for home electric appliance, such as washing machines and dishwaters which can easily become wet. In addition, these are used in electronic parts for automobiles.

PU electric insulator

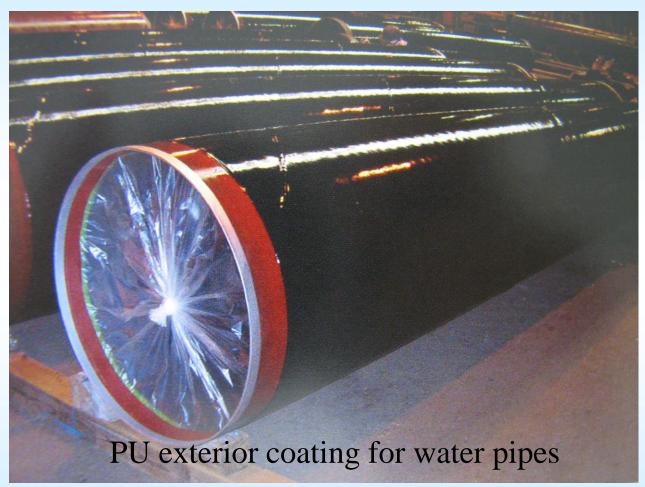
URIC H & Y Series

PU electric insulator for home-appliance

URIC H-30, Y-403

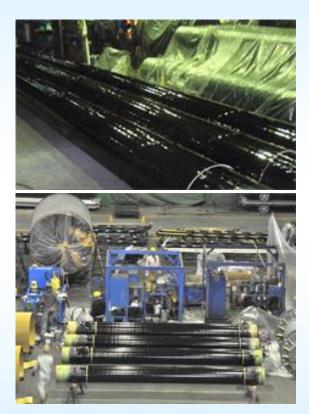
PU electric insulator for home-appliance

URIC H-30, Y-403


Application field of URIC

H-30, Y-403, H-420, H-1824, AC-005 Insulation sealant for home electric appliance, such as washing machines and dishwaters which can easily become wet. In addition, these are used in electronic parts for automobiles.

H-30, H-368 H-854, H-870 2KPU anti-corrosive paints for water & gas pipes, steel stakes etc.


Example 2

URIC H-30 URIC H-368 URIC H-854

2KPU anti-corrosive paints for iron & steel stakes

URIC H-368, H-854, H-870

Application field of URIC

H-30, Y-403,
H-420, H-1824,
AC-005

Insulation sealant for home electric appliance, such as washing machines and dishwaters which can easily become wet. In addition, these are used in electronic parts for automobiles.

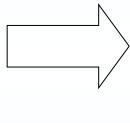
H-30, H-368 H-854, H-870 2KPU anti-corrosive paints for water & gas pipes, steel stakes etc.

F-15, F-25, F-40

PU floor coating materials

PU floor coating materials

PU floor coating materials


PU floor coating materials

PU solar heat-shielding paints for road

Before application

After application

Application field of URIC

H-30, Y-403,
H-420, H-1824,
AC-005

Insulation sealant for home electric appliance, such as washing machines and dishwaters which can easily become wet. In addition, these are used in electronic parts for automobiles.

H-30, H-368 H-854, H-870 2KPU anti-corrosive paints for water & gas pipes, steel stakes etc.

F-15, F-25, F-40

PU floor coating materials

H-30, H-368 H-420, AC-006 2KPU adhesives for automotive, architectural parts and materials for waterproofing etc.

Materials for PU waterproofing

URIC H-368

Materials for PU waterproofing

Before

After

URIC H-368

Materials for asphalt refinishing

1. 陥没や痛んだ路盤のゴミを取り除く。

2. 補修箇所にアスファルトピッチを投入

3. アスファルトピッチをスコップで平らに。4. 時間の経過とともに安定します。

URIC H-420

Application field of URIC

SE Series

PU adhesive for automotive wind-shield and retort pouches for food

PU adhesive for wind-shield

URIC SE Series

PU adhesive for retort pouches for food

Application field of URIC

SE series

PU adhesive for automotive wind-shield and retort pouches for food

PH Series

Urethane gel like insulation sealant for the electronic parts for automobiles and buffer mold for building etc.

Insulation sealant for electronic parts for automobiles

URIC PH Series

Application field of URIC

SE series

PU adhesive for automotive wind-shield and retort pouches for food

PH Series

Urethane gel like insulation sealant for the electronic parts for automobiles and buffer mold for building etc.

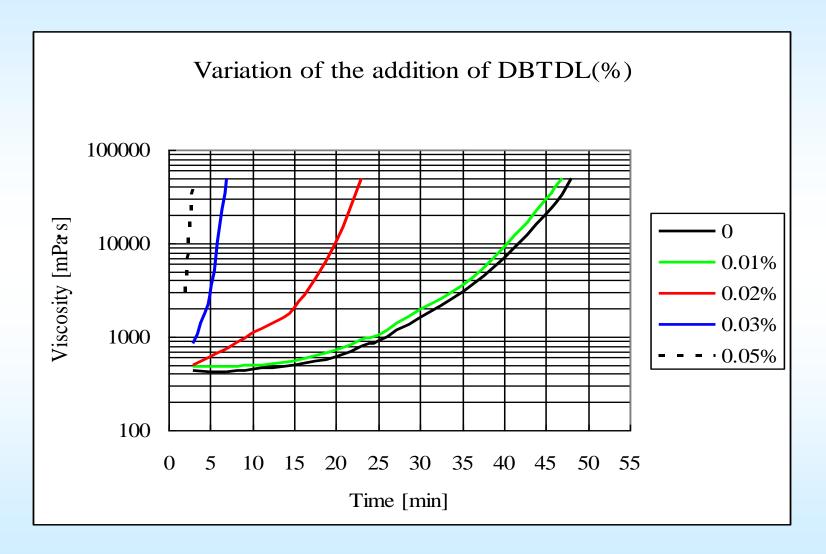
HF Series

Polyurethane flexible or rigid foam and a special cloth like a mountain jacket

PU flexible foam for automobile

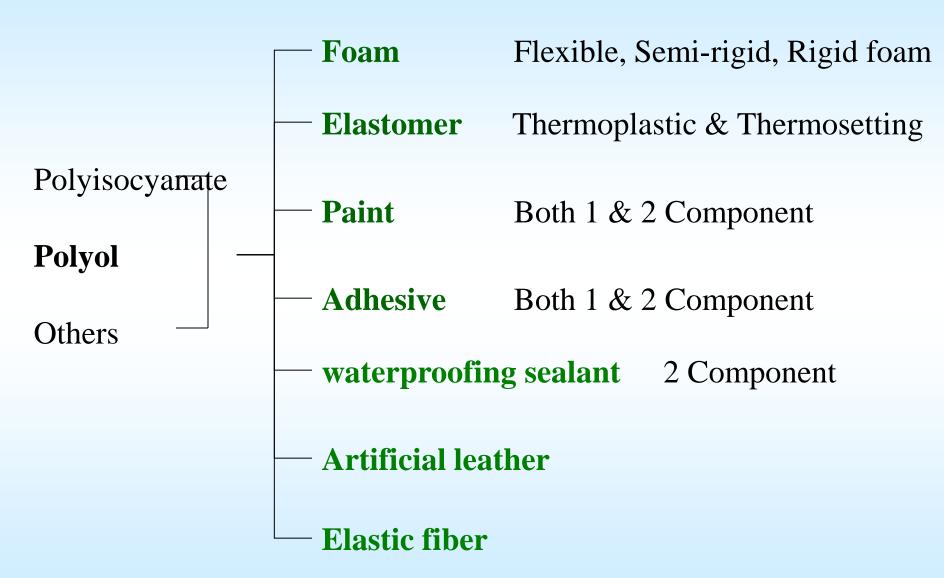
URIC HF Series

PU fiber for mountain jacket

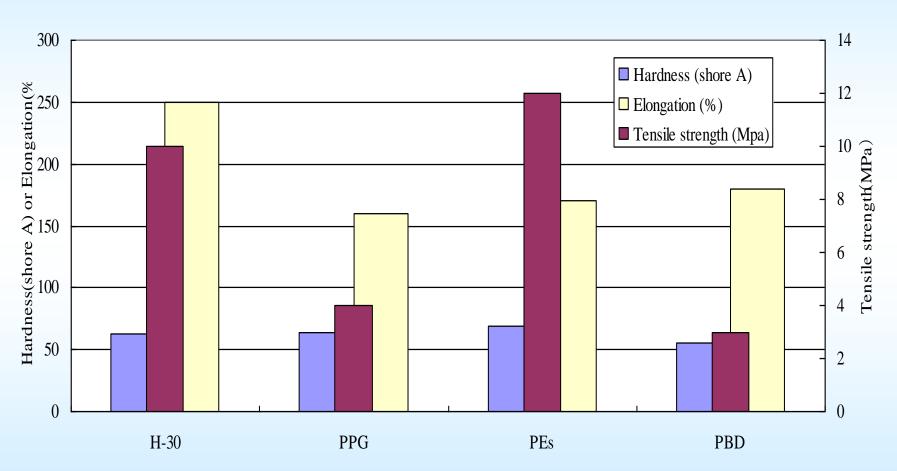

URIC HF Series

Thank you for your attention.

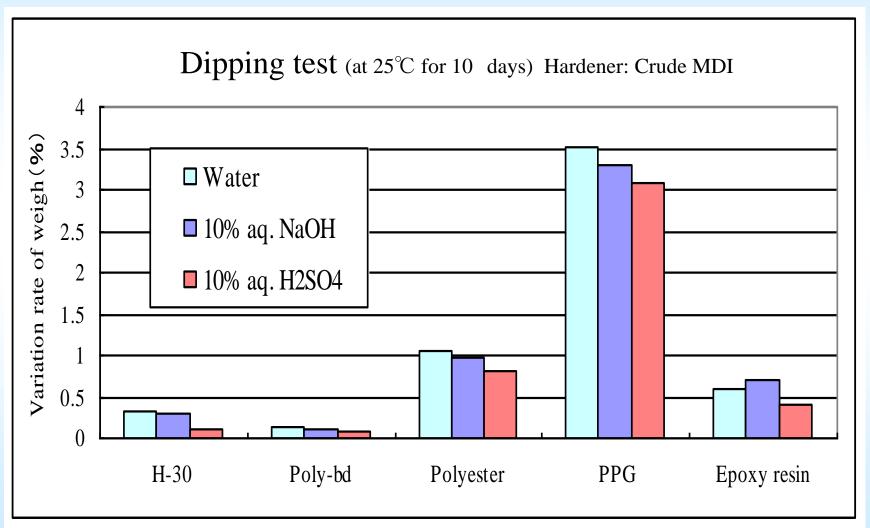
SOLUTION OIL CHEMICALS CO., LTD.


The influence of catalyst upon the gel time of castor oil polyurethane

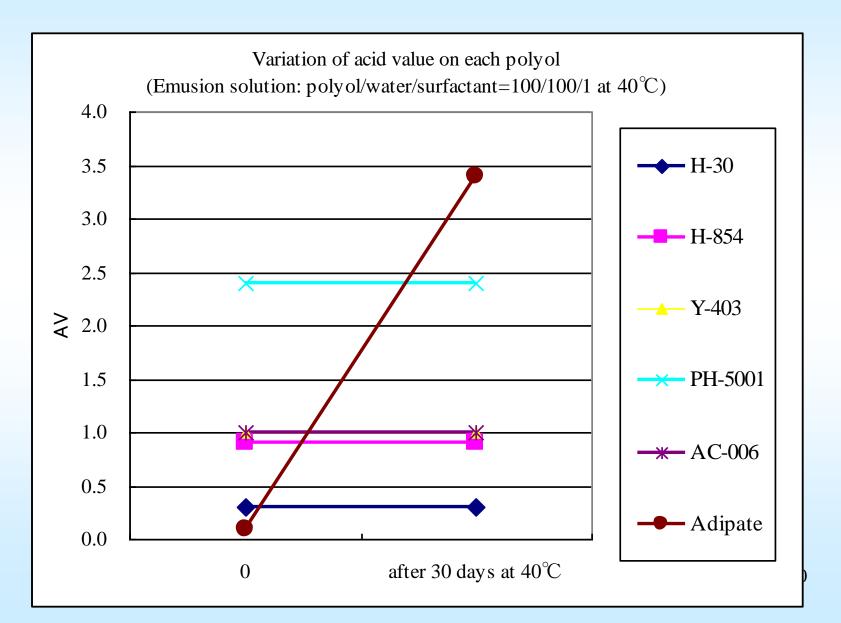
Urethane Polyols (Characteristics)


resistance→	Water	· Oil	Cold	Heat	P. Stren	gth Price
PPG	×	0	0	×	Δ	0
Polyester	×	0	Δ	0	0	Δ
Acrylic	0	0	×	0	0	Δ
Hydrocarbon	0	×	0	×	Δ	Δ
Castor oil	0	Δ-Ο	0	0	Δ-Ο	\triangle -O

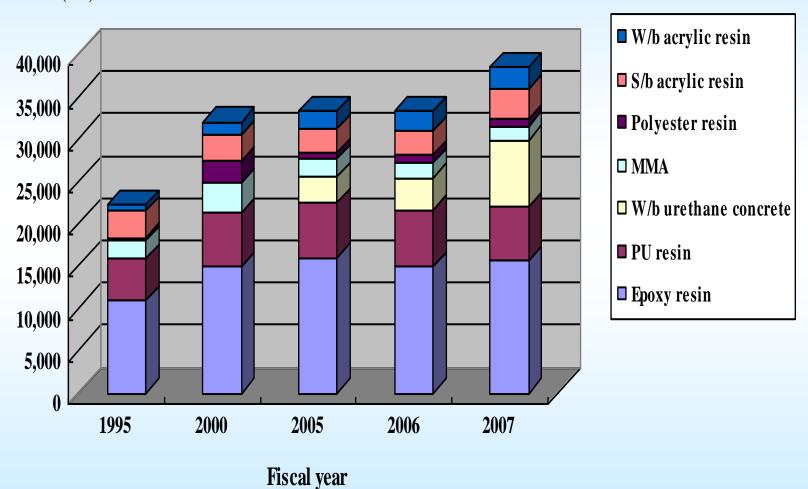
Polyurethane application

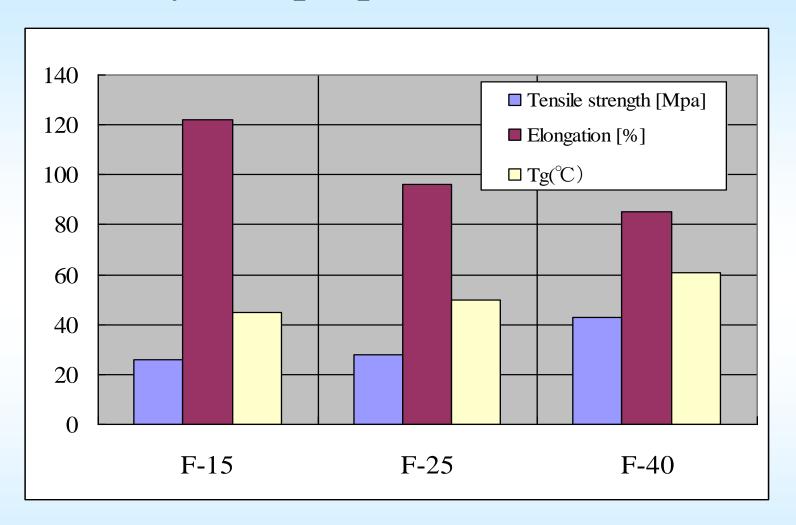

Castor Oil (Physical properties)

Hardener; Pure MDI



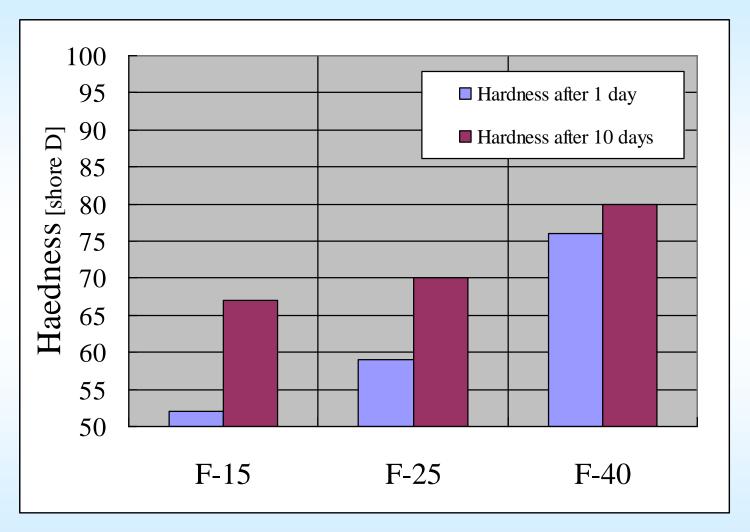
Castor Oil (Chemical resistance)


Comparison of hydrolysis resistance

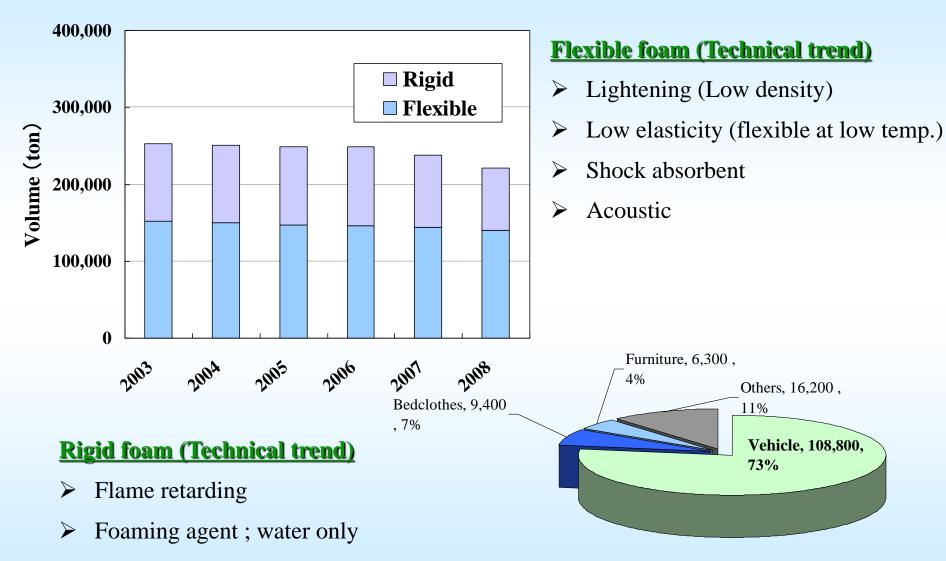


PU floor coating market in Japan

Sales volume (ton)


Physical properties of F series

Hardener; Crude MDI

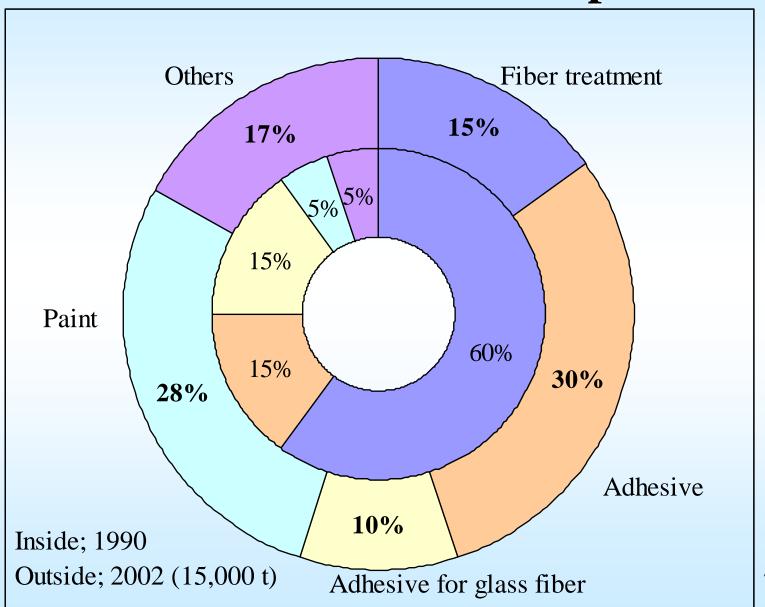


Variation of hardness after coating

Hardener; Crude MDI

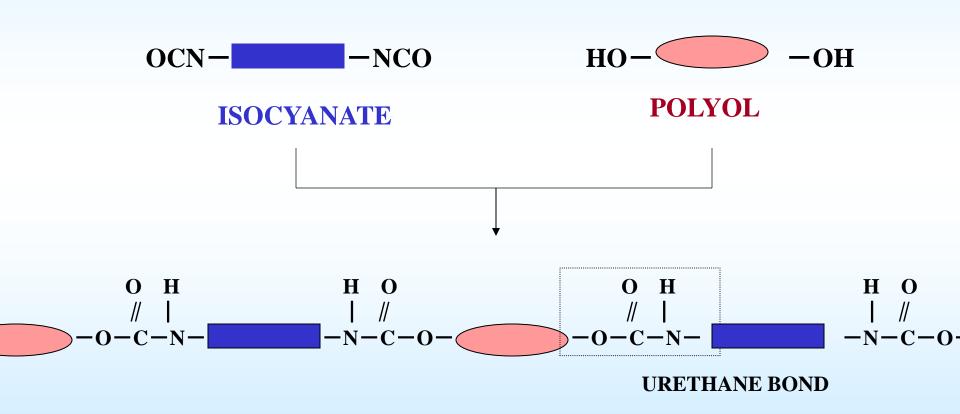
PU foam market in Japan

Application of PU flexible foam; 141,200 tons(FY07)

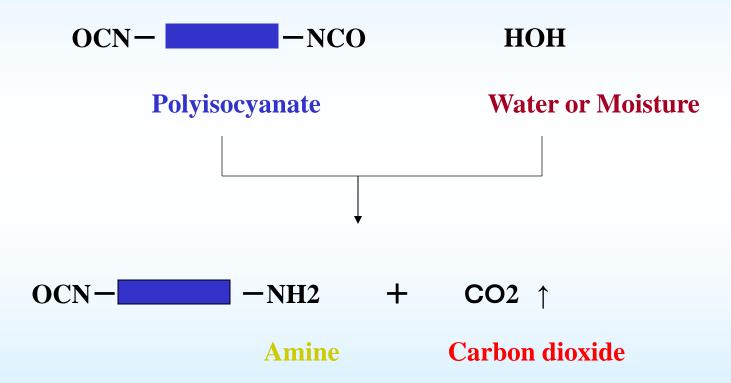

Comparison

		Flexib	Rigid foam		
	Method	Slab (general purpose use)	Mold	Slab or Mold	
	State of cell	Linki	Non-linking-cell		
0	Functionality		3 - 8		
polye	Epoxide	PO, EO	PO(EO)		
ther	OHV	56	28 - 36	380 - 550	
Polyether polyol	Viscosity	< 2000	< 2000		
	MW	3000	4600 - 6000	305 - 1100	
Polyester polyol	Functionality	3 or more		3 or more	
	OHV	45 - 70		350 - 400	
	AV	< 2		< 2	
Poly	Viscosity	10000 - 20000		2000~3000	
	Polymer-polyol	No use	Use	No use	
	Foaming agent	Wa	water		
	Polyisocyanate	TDI	TDI	Polymeric MDI	
			TDI/ P. MDI=8 / 2	75	

^{*}Polymer-polyol; Combination between PPG & vinyl modified polyol


Domestic Market of PU Dispersion

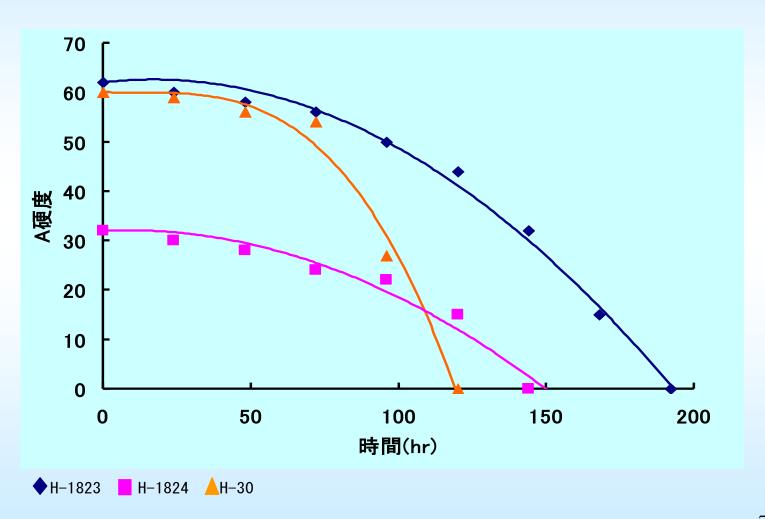
reference


Polyurethane Resin

Polyurethane resins consist of Polyols and Polyisocyanates

Foaming phenomenon

Polyisocyanate and water or moisture forms carbon dioxide after reacting

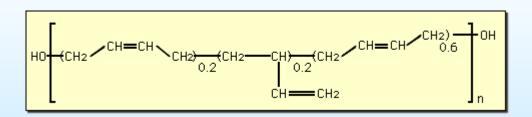


Castor oil is lower water-absorbing capacity

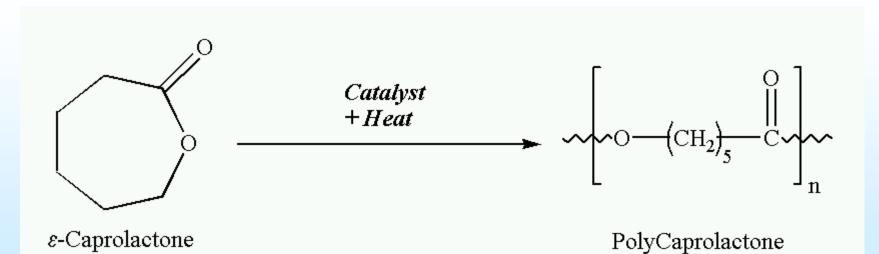
PCT (Presser cooker test)

(Moisture & Heat resistance acceleration test)

reference


PU rigid foam (Chemical resistance)

Seawater		MEK	
Soapy water		Acetone	
Benzene		Ethyl acetate	
Toluene		Styrene monomer	
Xylene		Concentrated sulfuric acid	
Gasoline		Concentrated nitric acid	
Paraffin oil		Concentrated hydrochloric acid	
Methyl chloride		Concentrated NaOH aq. solution	
Alcohol		Vegetable oil	
Carbon tetrachloride		Animal oil	


Hydrocarbon based polyols

Poly-bd (Polybutadiene polyol)

Polyisoprene polyol)

Chemical structure of PTMG or PCL

Characteristic on PCL

In General, PU made from PCD shows excellency over the other PU from other polyol like PTMG, PHA, and PCL, in the following properties such as mechanical properties, hydrolysis resistance, heet stability, chemical resistance, weatherability. In Addition, Asahi Kasei PCDLs have the following superior characteristics compared with other PCDs.

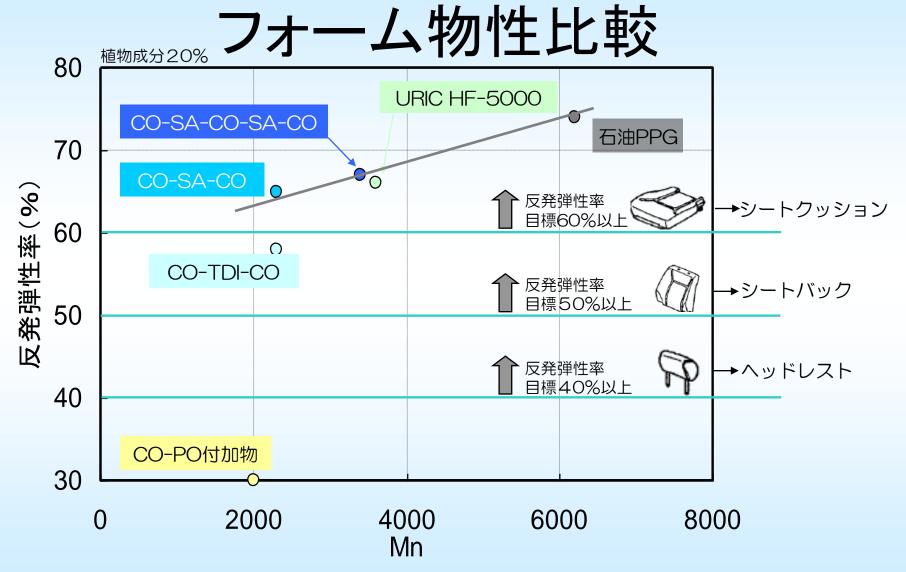
- •Easy to handle because of **liquid state** at room temperature. T5652, T5651, T5650J, T4672, T4671
- Adds softness to PU and remains **soft** at low temperatures. T5652, T5651, T5650J
- •Better chemical resistance. T4672, T4671, T4692, T4691

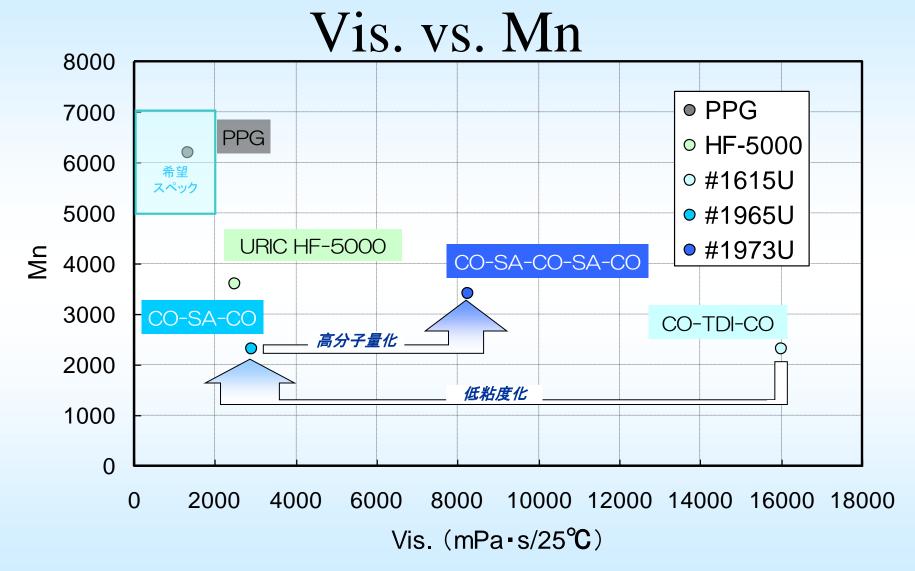
Typical applications of PCD are artificial leather, synthetic leather, TPU, pandex, adhesive, paint etc. Among them PCD is the best fitted for areas which require durability. Moreover Asahi Kasei PCDLs have better performance in the application of artificial leather, synthetic leather and spandex which require softness.

Chemical structure of UP

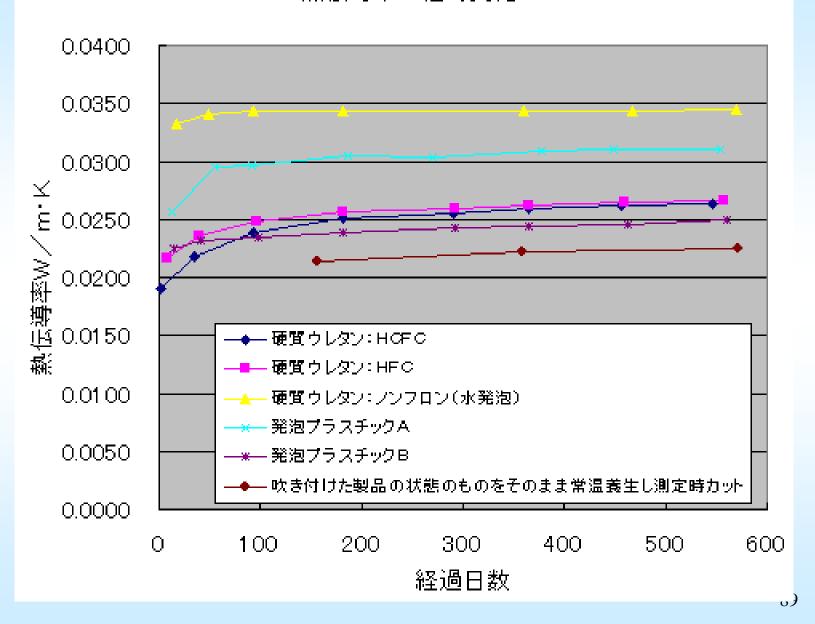
$$-\left(CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CH_{2}-CO\right)$$

DU PONT TYPE FALLING IMPACT TESTER


reference


Castor Oil (compatibility)

Castor oil/other polyol=1:1


	25 °C
PPG MW3000	O
PTMG MW3000	O
AA/BG MW1000	Δ
AA/DEG MW1000	0
Phthalic acid type polyester	×
Polycarbonate	\triangle
Polycaprolactone	\triangle
Polybutadiene	×

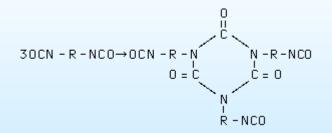
 \bigcirc ; transparence, \triangle ; opacity (haze), \times ; separation

熱伝導率の経時変化

Main reaction examples of NCO bond

ウレタン結合の生成(鎖延長反応)

$$\begin{array}{c} \text{HOH} \\ \text{HOH+} (\sim\!\text{NCO})_2 \!\rightarrow\! \sim\! \text{NCN} \!\sim\! + \text{CO}_2 \end{array}$$


尿素結合と炭酸ガスの生成(発泡反応)

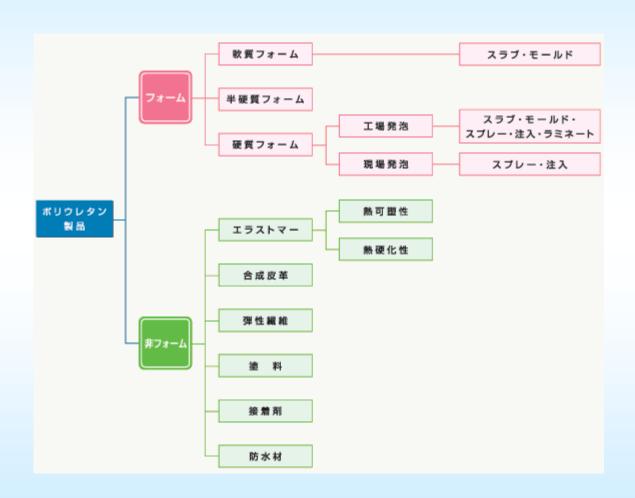
$$\begin{array}{c} \text{HOH} \\ \text{IIII} \\ \sim \text{NH}_2 + \sim \text{NCO} \rightarrow \sim \text{NCN} \sim \end{array}$$

尿素結合の生成(鎖延長反応)

ビュレット結合の生成(架橋反応)

アロファネート結合の生成(架橋反応)

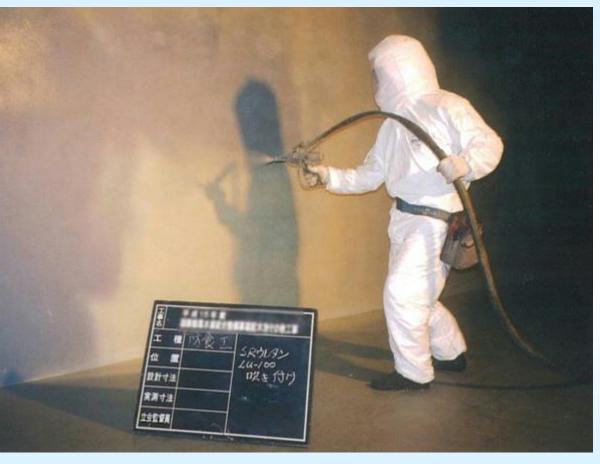
イソシアヌレート結合の生成 (三量化反応)

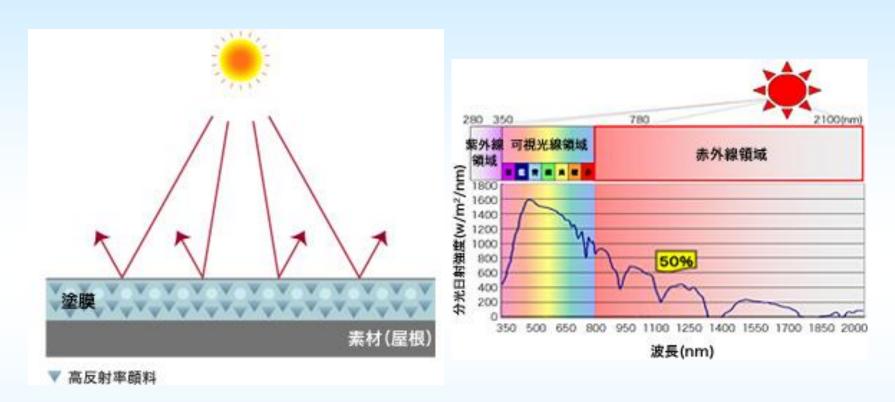

ポリウレタン分野別需要動向

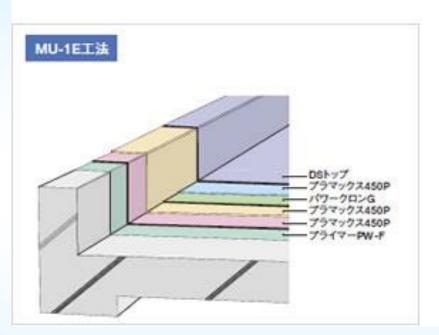
(単位:トン)

種 類	用途	2003年	2004年	2005年	2006年	・2007年
	車 両	109, 900	110, 500	108,800	109, 300	109, 300
軟質フォーム	寝 具	10, 100	10, 400	10,000	9,900	9, 400
	家具・インテリア	7, 200	7, 100	7, 100	6, 800	6,300
	その他	25, 800	22, 400	22, 100	19, 900	16, 200
	小 計	153, 000	150, 400	148, 000	145, 900	141, 200
	船舶車両	4, 800	4,800	4, 800	5, 800	5, 400
硬質フォーム	機器用	35, 600	36, 100	36, 500	34, 700	30, 900
	土木・建築	36, 900	36,900	37, 800	40,000	37,600
	その他		22,800	22, 400	22, 900	19, 200
	小 計	100,900	100, 600	101, 500	103, 400	93, 100
	注 型 用	4, 300	5, 000	4,600	4,800	4, 800
エラストマー	· T P U 用	12,800	14, 900	15, 500	17, 600	18, 200
	混 合		500	500	600	600
	小割		20, 400	20,600	23, 000	23, 600
塗 接	彩	129,000	136, 900	141,800	141, 700	142, 600
接	着新		59, 300	52, 000	56, 500	61, 200
	車 築 塗 布	,	70,600	69, 500	66, 300	65,900
	リーン グー村	30, 300	32, 300	34, 200	35, 400	36, 300
レザー・マ	イクロセルラー	21, 100	21, 100	21, 200	21, 300	21, 100
繊	## ## ## ## ## ## ## ## ## ## ## ## ##	26, 500	26, 300	26, 100	26, 100	25,600

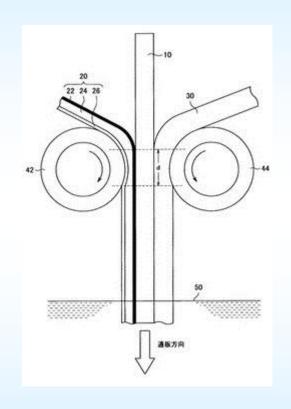
(フォームおよび塗料は経済産業省統計生産実績を基礎にして推定。またRIM成形は含まない。) ※塗料は溶剤含む。※端数は四捨五入。

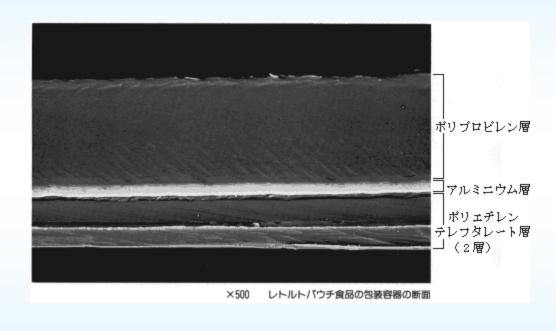

Application of polyurethane


Solvent-free 2KPU anti-corrosive paints



Mechanism of solar heat-shielding


Special modified TiO2 effectively reflects this infrared rays area (780-2100nm) which makes the person feel that it is hot.


Materials for PU waterproofing

Retort pouches for food

Thickness; 0.1 mm (100µm)